

Cable Multiconductor EAPSSP

RAILWAY SIGNALLING CABLES, MULTICORE, PE SHEATH FOR EXTERNAL INSTALLATIONS WATERBLOCKING AND RODENT RESISTANT

Description and application

Cables from 2 to 61 conductors. Copper conductor of 1,4mm section insulated with polyethylene. Conductors are stranded in layers to form the core, core that is protected with a EAPSSP type sheath. Cable protected against rodents.

They are used in signaling railway applications. Recommended for installation in ducts or buried.

Construction

- Conductors: Annealed copper. Section: 1,4 mm.
- Insulating: Solid polyethylene.
- Cabling element: Conductors.
- Core Construction: Conductors are stranded in layers. See coloured code table.
- Core wrapping: Dielectric tape longitudinally applied with overlap.
- Screen: Aluminium-copolymer tape longitudinally applied with overlap.
- Inner sheath: Polyethylene.
- Armour: Two steel tapes helically applied.
- Outer Sheath: UV resistant black polyethylene.
- Marking: CABLESCOM / Year / Lenght (Other type of marking available under request

Cables de Comunicaciones Zaragoza, SL.

Polígono de Malpica, calle D, nº 83. 50016 Zaragoza - Spain +34 976 729 900 |

www.cablescom.com | comercial@cablescom.com Certified Company ISO 9001 - ISO 14001

All drawings, weights and dimensions details, as well as tube and fibre colours in this document are only indicative and

EDITION TITLE APPROVED BY DATE Cable Multiconductor EAPSSP

ELECTRICAL	CHARACTERISTICS	(20°C)
------------	-----------------	--------

4	4	4	4	4	1.4
-Y					3
Maximum resista	ance (Ω/km)		\sqrt{\sq}\}}\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}}}\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sq}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sq}}}}}}\sqrt{\sqrt{\sqrt{\sqrt{\sqrt{	- S	11.9
Minimum insulat	ion resistance (M Ω)	km, 20°C, 500V)			15000
Mutual capacity	(nF/km, 800 Hz)	Š	Š	Š	Š
Dielectric streng	th (Vdc, 2min) Cond	luctor - Conductor	49	g	3000
Dielectric streng	th (Vdc, 2min) Cond	luctor - Screen	P.	#	3500
AS/DC operating	voltage (V)	8	S	8	S

MECHANICAL AND THERMAL PROPERTIES

Maximum allowable radius	G.	49	15 x Ø cable	G.
Operating temperature range	ğ	Ĭ	-25° C / +75° C	ğ
Installation temperature range	O.	O,	Q,	C)

Cables de Comunicaciones Zaragoza, SL.

Polígono de Malpica, calle D, nº 83. 50016 Zaragoza - Spain +34 976 729 900 |

Certified Company ISO 9001 - ISO 14001

All drawings, weights and dimensions details, as well as tube and fibre colours in this document are only indicative and must not be considered contractual.

TITLE EDITION APPROVED BY DATE

Cable Multiconductor EAPSSP 1 O.salomon 2022-08-10

DIMENSIONS AND WEIGHTS

Cable Multiconductor EAPSSP x 1.4					
Number of conductors	, 8 N	ominal Weight (kg/km)	Ì	Nominal OD (mm)	
2×1 8	244	Š	12,6	T	
4x1	264		13,7		
7x1 6	343		15,2		
9x1 9	402	G G	16,5	g	
12×1	476	Ð	17,9	Ð	
O19x1	631	Q _X	19,8	Š	
27x1	821	2 2	22,7	2 2	
37x1	1034	9	25,1	9 .8	
48x1	1279	4	28,1	4	
61×1	1537	T T	30,2	A A	

Cables de Comunicaciones Zaragoza, SL.

Polígono de Malpica, calle D, nº 83. 50016 Zaragoza - Spain +34 976 729 900 |

Certified Company ISO 9001 - ISO 14001

All drawings, weights and dimensions details, as well as tube and fibre colours in this document are only indicative and must not be considered contractual.

TITLE	EDITION	APPROVED BY	DATE
Cable Multiconductor EAPSSP	1	O.salomon	2022-08-10